
A Case Study in Preserving a
High Energy Physics Application

Haiyan Meng, Matthias Wolf, Peter Ivie, Anna Woodard, Michael Hildreth, and Douglas Thain
Department of Physics and Department of Computer Science and Engineering

University of Notre Dame
{hmeng|mwolf3|pivie|awoodard|mhildret|dthain}@nd.edu

ABSTRACT
The reproducibility of scientific results increasingly depends
upon the preservation of computational artifacts. Although
preserving a computation to be used later sounds easy, it is
surprisingly difficult due to the complexity of existing soft-
ware and systems. Implicit dependencies, networked resources,
and shifting compatibility all conspire to break applications
that appear to work well. To investigate these issues, we
present a case study of a complex high energy physics ap-
plication. We analyze the application and attempt several
methods at extracting its dependencies for the purposes of
preservation. We propose one fine-grained dependency man-
agement toolkit to preserve the application and demonstrate
its correctness in two different environments - one virtual
machine from Notre Dame Cloud Platform and one vir-
tual machine from Amazon EC2 Platform. We report on
the completeness, performance, and efficiency of each tech-
nique, and offer some guidance for future work in application
preservation.

1. INTRODUCTION
Reproducibility is a cornerstone of the scientific process [5].

In order to understand, verify, and build upon previous
work, one must be able to first recreate previous results by
applying the same methods. Historically, reproducibility has
been accomplished through painstaking detailed documenta-
tion recorded in lab notebooks, which are then summarized
in peer-reviewed publications. But as science increasingly
depends on computation, reproducibility must also encom-
pass the environments, data, and software involved in each
result [34]. It is widely recognized that informal descriptions
of software and systems – although common – are insufficient
for reproducing a computational result accurately. A more
automated and comprehensive approach is required.

The reproduction of a computation has three broad com-
ponents, each of which suggests somewhat different approaches:

• The computing environment, consisting of the ba-
sic hardware and the operating system can be pre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

served as physical artifacts or as a combination of vir-
tual machine monitor (hardware) and virtual machine
image (operating system) [24].

• The scientific data to be analyzed has historically re-
ceived the most attention for curation. In a large, well-
organized project, it may be stored in a data repository
or database management system, with associated doc-
umentation and a curation strategy. In a small effort,
it could simply be a handful of files.

• The software environment includes the source code,
binaries, scripts, configuration files, and everything
else needed to execute the desired code. As with data,
the software could be drawn from a well-managed soft-
ware repository, or it could be a handful custom scripts
that exist in the user’s home directory.

In a very abstract sense, reproducing a computation is
trivial. Assuming a computation is deterministic, one must
simply preserve all of the inputs to a computation, then
re-run the same code in an equivalent environment, and the
same result will be produced. For a small custom application
on a modest amount of data, this could be accomplished
by capturing the complete environment, data, and software
within a single virtual machine image, and then depositing
the virtual it into a curated environment. The publication
could then simply refer to the identifier of the image, which
the interested reader can obtain and re-use. This approach
has been used to some success with systems mentioned in [8].
1

However, this simple approach is not sufficient for large
applications that are run in complex social environments.

• There may be implicit dependencies on items that
are not apparent to the end user. For example, they
may understand that they rely on a particular data
analysis package, but would have no reason to know
that the package has further dependencies on other
libraries and configuration files. Or, they may know
that the computation only runs correctly on a partic-
ular machine, but not know this is because it relies on
a filesystem that is mounted only on that machine.

1Of course, we are glossing over the problem that hardware
architectures and virtual machines also change, so one must
also preserve the VMM software necessary to run the image.
The VMM itself depends on a software environment which
must also be preserved. A long-term preservation system
might end up running a whole stack of nested virtual ma-
chines in order to provide the desired environment!

Figure 1: Inputs to Tau Roast

• The granularity of the dependencies may not be well
understood. For example, the user may understand
that a computation depends upon a data collection
that is 1TB in overall size, but not have detailed knowl-
edge that it only requires three files totalling 300MB
out of that whole collection.

• There may be dependencies upon networked resources
that are inherently external to the system, such as a
database, a code repository [11], or a scalable filesys-
tem [4]. For such resources, it must be decided whether
the dependency will simply be noted, or if it must be
incorporated whole or in part.

• Where common dependencies are widely used, it
may be inefficient or impossible to store one copy of
each dependency for each archived object. Some form
of sharing or de-duplication is necessary in order to
keep the archive to a reasonable size.

We do not claim to have solved these problems in any com-
prehensive way. Rather, our aim in this paper is to highlight
the scope of the problems by presenting a case study of one
complex application. The application is presented to us first
in the form of an email that describes in prose how to in-
stall the software and run the analysis. We perform several
successive refinements to convert it into an executable and
preservable object. We then develop techniques for reducing
the size of the dependencies that are necessary for the ob-
ject to function, and we demonstrate the preserved object
functioning correctly in three different physical and cloud
environments. We describe how each of these techniques
may interact with a future archive of preserved software ar-
tifacts, and conclude with some reflections on the challenges
of preservation and advice for future efforts.

2. OVERVIEW OF TAU ROAST
Within the ongoing investigation of the Higgs boson at

the CMS detector, part of the LHC at CERN [10], the Higgs
production in association with two top quarks allows to mea-
sure the Higgs coupling strength to top quarks. As the Higgs
boson is to short-lived to be detected itself, it has to be re-
constructed from its decay products.

The application which is the study of this paper is called
TauRoast. It searches for cases where the Higgs boson decays
to two tau leptons. The leptons are not observed directly,

Name Location Total Named Used

CMSSW code CVS 88.1GB 448.3MB 6.3MB
Tau source Git 73.7MB 73.7MB 6.7MB
PyYAML binaries HTTP 52MB 52MB 0KB
.h file HTTP 41KB 41KB 0KB

Ntuples data HDFS 11.6TB N/A 20GB
Configuration CVMFS 7.4GB N/A 103MB
Linux commands localFS 110GB N/A 68.4MB
HOME dir AFS 12GB N/A 32MB
Misc commands PanFS 155TB N/A 1.6MB
Total 166.8TB N/A 21GB

The first column illustrates the total size of each data and soft-
ware source; the second column illustrates the size of the named
files from each source; the third column illustrates the size of ac-
tually used data from each source. N/A denotes it is hard to
figure out the named size of implicit dependencies directly.

Table 1: Data and Code Used by Tau Roast

but by the particle showers that they generate. So, the anal-
ysis must search for detector events that show a signature of
decay products compatible with both hadronic tau and top
decays. Properties of such events are used to distinguish the
events of interest (Higgs decays) from all other events and
are also used in further statistical analysis.

Figure 1 shows that both the code and data that form
TauRoast are drawn from large repositories through multi-
ple steps of reduction. A preservation strategy must weigh
whether to store the large repositories completely, the frag-
ments used by an artifact, or something in between.

Code Sources. Like many scientific codes, the central
algorithm of TauRoast is expressed in a relatively small
amount of custom code developed by the primary author.
But, the code cannot run at all without making use of an
enormous collection of software dependencies. Some of these
dependencies are standard to operating systems worldwide,
some are standardized across the entire high-energy physics
field, some are particular to small collaborative groups, and
a few are very specific to a single researcher.

The largest of these repositories is the CMS Software Dis-
tribution (CMSSW), a carefully-curated selection of soft-
ware packages which is distributed in several forms. His-
torically, components of CMSSW were obtained by check-
ing components of the source out of CVS, or by installing
a complete binary package on a shared filesystem within
an HPC center. In recent years, distribution has moved to
an on-demand delivery system known as CVMFS [4], which
provides a filesystem interface that transparently accesses
a remote repository. The content of CMSSW is managed
very carefully by a centralized team whose main goal is to
ensure that the current version of the software operates cor-
rectly on the operating systems and architectures currently
in use. However, preservation is not a specific objective of
the system, and so there is no particular guarantee that old
versions of CMSSW will continue to operate indefinitely.

CMSSW contains many different tools, libraries, and util-
ities. No single code uses anywhere close to all of that. But,
because it is widely used within the community, it is common
for users and developers to simply expect that a particular
version of the entire repository is available.

Data Sources. The CMS collaboration provides analy-
sis end-users with a pre-processed and reduced data format,
AOD [15], containing information for events, i.e., proton-
proton collisions with a signature of interest, in the form of

reconstructed particles. This format is based on the RAW
output of the CMS detector readout electronics and recon-
structed world-wide. Both real and simulated data are avail-
able for examination.

As AOD data are too large to be iteratively processed
repetitively in an physics analysis workflow, it is normally
reduced further in structural complexity and content. For
the analysis under investigation here, this is a two-step pro-
cess. First, the AOD data are processed at the Notre Dame
working group cluster to BEAN events, containing only triv-
ial data containers packed in vectors. This step is time and
CPU intensive and its output contains data of 11.6 TB to
be analyzed by the tau analysis. It is performed by a small
custom code framework, which is built on top of CMSSW.
The BEAN format, production code, and data are shared
within the analysis group looking at Higgs production in as-
sociation with top quarks, which is formed by groups from
a few American and European universities, consisting of up
to a few dozen contributors.

In the second step, the data are reduced to the “Ntuple”
format, which contains only events matching basic quality
criteria and fields relevant to TauRoast. This results in a
dataset of 43.3 GB. Again, the Notre Dame CMS groups
cluster resources are used to perform this reduction and se-
lection, running highly customized software, built on CMSSW
and the BEAN framework, with code written and main-
tained by a small group.

Once the data has been reduced to Ntuples, TauRoast can
be run as a single process, and contains a stringent event se-
lection to keep only high quality candidate events for the
underlying physical process (using about 20 MB of space).
Quantities from the selected events can be both plotted and
used in multivariate analysis to determine the level of ex-
pected signal in real data. This package is written using
the CMSSW build framework, but only utilizes code from
ROOT, a particle physics toolkit underlying CMSSW, and
a few external python dependencies for convenience.

3. OBSERVATIONS
TauRoast was provided to us in the form of an email which

described, in prose, how to obtain the source, build the pro-
gram, and run it correctly on one specific machine at our
home institution, with no particular guarantee that it will
run anywhere else in the world. Although this starting point
may seem extreme, it is perfectly natural for collaborators
to share configurations with each other in this form, and
to rely on the presence of a working environment with ap-
propriate dependencies already installed. From this starting
point, the authors played the role of curators, whose job it
is to prepare the application for permanent archival.

First, we elaborated the email instructions into an exe-
cutable script that obtains the dependencies and then ex-
ecutes the analysis. The script declares the necessary en-
vironment variables, downloads and checks out the neces-
sary source code, builds it appropriately, calls initialization
scripts in the dependent software, and then runs the anal-
ysis. A few rounds of correction with the original author
were necessary to obtain all the dependencies and run the
artifact correctly. (The original email also indicated how to
run the application within a production batch system. For
the purposes of preservation, we consider the execution in-
frastructure to be distinct from the application, and leave it
out of consideration for now.)

The process of elaborating the program into a script re-
vealed several observations about this type of application:

• Many Explicit External Dependencies. TauRoast
depends on a large number of external dependencies,
each with a different access method and data source.
While we knew in advance that it depended upon the
large CMSSW distribution, it was not apparent until
elaborating the script that it depended upon two dif-
ferent Github repositories for the Tau source, a CVS
server at CERN for some configuration information,
a public web page for the PyYAML library, and the
public home page of a Notre Dame student for one
missing header file. (The latter is particularly trou-
bling!) While, at some level, the authors and users of
these software know of these dependencies, they are
often missing in informal communications or forgot-
ten once the dependency is installed. However, once
known, they are at least expressed explicitly within the
script.

• Many Implicit Local Dependencies. A much harder
problem is that the application assumed the presence
of many different components in the local filesystem
view. It would be tempting to capture all of these by
simply storing a virtual machine image containing the
local filesystem. However, the application depended
on no less than five networked filesystems available on
a particular machine available to the author: the data
to be analyzed was stored on a HDFS [6] cluster, some
configuration data was stored on a CVMFS [4] filesys-
tem, and a variety of software tools were on a NFS [17],
PanFS [33] and AFS [28] systems. The original authors
were not aware of many of these dependencies, because
they simply relied on local administrators to configure
the software and make it available.

• Configuration Complexity. As a means of control-
ling the complexity of dependent software packages,
the high energy physics community has developed a
number of tools that perform run-time configuration
and consistency checks of the available software. scram
is the software management tool used by the CMS ex-
periment. Before running any code, scram is used to lo-
cate the appropriate version software, set environment
variables such as the PATH, run any tool-specific con-
figuration, and do the same for all software on which
it depends. If the correct versions are not available,
scram halts and emits an error. While this procedure
has great value for consistency, it also introduces a
significant cost because it involves a large number of
nested scripts traversing a filesystem, repeatedly look-
ing up metadata. In our example, the time to perform
this configuration with a cold cache is about 14 min-
utes, which is almost as large as the actual analysis
run, which takes 20 minutes.

• High Selectivity. Although the total size of the re-
sources accessed by this program is very large, the
size of the data and software actually used are much
smaller. Often, an entire repository or data source is
named within the script, but the program only needs
a handful of items from that source. For example, the
data is stored on an HDFS filesystem with 11.6TB of

Figure 2: Version Evolution

data, but only 20GB are actually consumed by the
program. The CMSSW repository is 88.1GB in to-
tal but only 448.3MB in source are checked out, and
the software actually used only measured 6.3MB. In
a few cases, a source of software is named but never
actually accessed. (For example, our original script
includes the Open Science Grid software stack in the
PATH, but does not actually use it.) We suspect that
end users are accustomed to missing dependencies and
thus get in the habit of adding commonly used soft-
ware, whether it is needed or not.

• Rapid Changes in Dependencies. Over the course
of three months between collecting the initial email,
analyzing the program, and writing this paper, the
computing environment was under continuous change.
The CMSSW software distribution released a new ver-
sion, the target execution environment was upgraded
to a new operating system, and the application depre-
cated the use of CVS for obtaining the software. While
the users of this software seem be accustomed to con-
stant change, any preservation technique will have to
be very cautious about relying upon an external ser-
vice, even one that may appear to be highly stable.

4. EVOLVING THE ARTIFACT
It is clear that the artifact, as provided, is not in a suitable

form for preservation. While it might be technically possi-
ble to automatically capture the entire virtual machine and
all of the connected filesystems, it would require 166.8TB of
storage, which would be prohibitively expensive for captur-
ing this one application is alone. Further, if multiple similar
applications are preserved, we would miss the opportunity to
identify common dependencies and store them once for mul-
tiple artifacts. A more structured approach to dependency
management is needed.

Figure 2 shows how we have evolved this artifact through
several stages which make it more suitable for preservation.
In each step of evolution, we make the dependencies of the
artifact more explicit and available for analysis and auto-
mated processing. As noted in the previous section, the
original author provided us with prose instructions by email
which we translated into an executable script. The exe-
cutable script has embedded in it a number of external iden-
tifiers such as URLs pointing to repositories and paths to

networked filesystems. As a general programming practice,
embedding such constants into the middle of a program is
unwise, and so we extract all of those identifiers and place
them outside the script in a dependency map or just map for
short. The dependency map lists all of the external depen-
dencies of the application, indicating the type, how they are
accessed, and where they are currently located. The result-
ing script then simply refers to abstract file locations such as
GIT and CVMFS, while the map file indicates where they are
currently located. If properly constructed, the script should
not refer to any external resource unless it is indicated in the
dependency map. We call this idealized artifact an abstract
script.

By extracting the dependencies into the dependency map,
we introduce great freedom for the curator to move, trans-
form, and otherwise manipulate the dependencies of the arti-
fact without damaging the artifact itself. A Figure 2 shows,
it is straightforward for an automated tool to examine all of
the dependencies in the map, download those that are miss-
ing, and then modify the map to point to the local copies
of the dependencies. If we group the script, dependency
map, and dependencies into a package, we now have a self-
contained artifact that can be moved from place to place.
In some cases, it may be safe to allow the dependency map
to refer to trusted remote repositories. Whether this is ad-
visable is a judgment that must be made by the user or the
curator, taking into account the long-term stability of said
repositories.

However, only having the package and the dependency
map is not enough. The successful execution of the appli-
cation on the original machine also relies on the configura-
tion of environment variables. We collected the environment
variables of the original machine and transformed it into one
executable script. If another researcher wants to repeat the
application, this executable script will be first executed.

The relationship of different roles involved in the appli-
cation preservation and reproduction is shown in Figure 3.
The original author uses the packaging utility to generate
the package for one application. Then the package, together
with its map file and description file will be published. When
another researcher wants to repeat the application, one copy
of the package will be downloaded into the new machine and
the application can be repeated.

When we try to repeat one application on one new ma-
chine, one map file is necessary for the relocation of the data

Figure 3: Relationship of Roles

access targets, as show in Figure 2. The map file clearly
defines the real location of each dependency in the format
of dependency variables - the real location of dependency
variable GIT is /data/git/cms-ttH and the real location of
dependency variable CVMFS is /data/cvmfs/grid.cern.ch.
The script only refers to the dependency variables defined
in the map file. This design decouples the application script
and the actual data access targets, which minimizes the im-
pact of the evolution of different data dependencies and en-
sures the transparent access. The modification of the pack-
age only introduces the minimal changes of the map file on
the client side.

This basic approach to dependency management is a step
in the right direction for dependencies that are explicit and
external to the user’s native execution environment. How-
ever, it leaves two other problems unsolved.

First, the basic approach requires that someone be aware
of the dependencies, whether it be the end user, the system
administrator, or the archive curator. It seems reasonable
to expect the user to be aware of a large dependency men-
tioned in a top-level script. But, oftentimes the dependency
is embedded invisibly deep within the software stack, or is
connected to the machine by the local system administra-
tors. No single party is likely to have complete information
about all of the dependencies. Second, the basic approach
assumes that the entire dependency is actually consumed
by the artifact. As we have suggested above (and will show
below), this sort of program often only consumes a small
fraction of what it does declare as a dependency.

To address both of these problems, users and curators
alike need tools that will automatically observe the depen-
dencies of complex applications, to facilitate automatic and
efficient preservation.

5. MEASURING DEPENDENCIES
We have developed a prototype tool to assist in the mea-

surement and preservation of implicit dependencies for com-
plex applications. We use Parrot [32] to explicitly record all
of the files accessed by our example application, allowing us
to observe how much of each external dependencies is used,
and what local resources are implicitly used. Using this in-
formation, we create a reduced package which contains only
the files actually used by the application.

Parrot is a virtual filesystem access tool which has pre-
viously been used to attach existing programs to a variety
of remote I/O systems, such as HTTP, FTP, and CVMFS.
It works by trapping an application’s system calls through

Path used in Program Actual Location
/ /tmp/package-hep

/tmp/package-hep /tmp/package-hep

/dev /dev

... ...

Table 2: Structure of Map File

the ptrace debugging interface, and then replacing them
with the desired I/O operations. Parrot is already used in
the high energy physics community with applications like
TauRoast specifically to provide access to the CMSSW soft-
ware distribution via the CVMFS distributed file system.
We made small modifications to Parrot to record a namelist
which lists all of the files that an application actually ac-
cesses.

Figure 4 illustrates the measurement process. The start-
ing point of this toolkit is one successful execution of the ap-
plication on the native machine. First, we execute the actual
data analysis script under Parrot to generate the namelist.
Then, using the namelist, we generate a package containing
all the necessary data and software for one analysis program
is generated. When another researcher wants to repeat the
program, he only needs to obtain the package and execute
the actual analysis program inside the package.

For one execution of TauRoast, the namelist 132,047 ac-
cessed filenames, along with the operation used to access
the file, such as open, stat, read, etc. With duplicate file-
names removed, the list is reduced to 67,168 files. Many
of those entries do not exist, because they reflect attempts
by the application to search for programs and libraries in
multiple places. Only 22,068 entries reflect existing files or
directories.

The packaging tool iterates over each item of the filename
list, determines the process mode and replication degree ac-
cording to the file type (common files, directories, symbolic
links) and the system call type, generates one package con-
taining the dependencies, and summarizes the contents of
the package as shown in Table 3. To the extent possible, the
filesystem structure of the original environment is preserved.

We considered several approaches to constructing the pack-
age. In a shallow copy, we only copied the individual files
in the namelist, creating only parent directories for each.
Where a directory was listed, we created the directory and
populated it with empty files as placeholders to facilitate a
directory listing. In a medium copy, we copied the in-
dividual files as before. Where a directory was listed, we
created the directories and copied the contents of the files in
that directory, one level deep. A deep copy would dupli-
cate all directories recursively, but this would have resulted
in TB-sized packages, so we did not consider it further.

Parrot is required to re-run the packaged artifact, in order
to force the packaged files to appear to exist in their original
locations. To this end, the packaging tool creates a file map
which maps the logical names of the files to their current
physical locations, as shown in Table 2. Parrot reads the
file map and redirects system calls at run-time to achieve
the desired effect. As the example suggests, special device
files such as /proc and /dev are not incorporated into the
package but are instead accessed natively.

6. EVALUATION

Figure 4: Workflow of The Fine-Grained Dependency Management Toolkit Based on Parrot

Shallow Copy Medium Copy
Whole Files: 1632 15642
Empty Files: 14273 263
Directories: 1549 1549

Symbolic Links: 4614 4614
Total Size: 21GB 28GB

Table 3: Package Information

We evaluated the correctness of the reduced package and
the overhead of generating the package. To do it, the ap-
plication was repeated with the help of Script (as shown
in Figure 2) on the original machine, mentioned as Script-
Solution in the following part, one reduced package was
generated and verified with the help of Parrot on the original
machine, which will be mentioned as Package-Solution.
Then, two different virtual machines (VM) - one VM from
Notre Dame Cloud Platform based on KVM and one VM
from Amazon EC2 Platform based on Xen, were employed
to further verify the correctness of the reduced package.

We first repeated the example from scratch using the Script
translated from the original email on the original machine
and counted the time consumption and data size. Then
based on the successful execution of Script-Solution, Package-
Solution is evaluated - one package containing necessary de-
pendencies is generated, and then the time consumption and
data size is analyzed.

To measure time consumption, we counted the time used
to obtain remote software dependencies, build environment,
and analyze the dataset respectively. We also counted the
time used to obtain the filename list and generate the pack-
age. To measure data size, we can easily figure out the
size of each data and code source inside the package under
Package-Solution. Script-Solution does not support mining
of implicit dependencies. As for remote sources, we can fig-
ure out the named size through the analysis script. However,
it is hard to figure out the named size of each local source.
Instead, we only knew that total size of each file system is
very large.

Table 4 shows the execution time comparison between
Script-Solution and Package-Solution. Package-Solution is

Task Original Reduced
Category Script Package
Obtain Namelist N/A 28min 28s
Generate Package N/A 85min 51s
Software Acquisition 8min 11s N/A
Environment Build 5min 49s 4s
Analysis Code 20min 31s 13min 04s

Table 4: Execution Time Comparison between
Script-Solution and Package-Solution

faster than Script-Solution, because all the software copied
into the package has been compiled and the Software Acqui-
sition stage is not necessary. and all the environment build-
ing only takes 4 seconds. We were surprised that Package-
Solution even reduces the actual analysis time. The reason
for this is that data is obtained through accessing HDFS in
Script-Solution, but is copied into the package in Package-
Solution. This localization of experimental data speeds up
the data analysis process, resulting the actual analysis time
reducing from 20 minutes to 13 minutes.

Table 4 also illustrates the time used to obtain the file-
name list and generate the package. The time used for these
two steps is longer than the execution time, because each
filename of the list, together with its system call type, needs
to be checked, and the structure of each directory item must
be maintained. However, this is only done once. Once the
package is generated, many users can directly obtain the
package and repeat the application separately.

Table 1 illustrates the total size, named size in the exam-
ple and actually used size of each remote source (the first 4
items) and local source (the remaining 5 items). The third
column corresponds to the data size of Package-Solution and
can be easily figured out, because all the necessary data
has been copied into the package. Script-Solution does not
support measuring implicit dependencies. As for remote
sources, we can figure out the named size through the anal-
ysis script. However, it is hard to figure out the named size
of each local source. Instead, we only knew that total size
of each file system is very large.

To further verify the correctness of Package-Solution on

Machine Distro CPU Mem Execution
Type Version Cores (GB) Time
Native Red Hat 64 125 13min 04s
Machine 5.10
KVM CentOS 4 2 21min 38s
(Notre Dame) 5.10
Xen Red Hat 16 60.5 13min 30s
(EC2) 5.9

Table 5: Evaluation of Different Machines

Figure 5: Preserving Multiple Artifacts

other machines, two different machines are employed - one
virtual machine [14] from Notre Dame Cloud Platform based
on KVM sharing the same kernel version with the origi-
nal machine, and one virtual machine from amazon EC2 [2]
based on Xen.

Table 5 illustrates the configuration of each machine and
the execution time of the application on each machine. All
the machines adopt x86 64 hardware platform and Linux
OS. Both of the two VMs repeated the application with
the help of the package generated on the original machine
successfully. The execution time on one machine greatly
depends on its hardware configuration.

Regardless, we demonstrate that the application runs cor-
rectly in a completely different environment.

7. OPEN PROBLEMS
Figure 5 shows the rough information architecture of the

archive that we imagine for complex scientific software like
TauRoast. Each artifact to be preserved is a package that
consists of a top-level script to invoke the software, a depen-
dency map, and the dependencies themselves, which may
be external to the original program. The artifacts are then
ingested into the archive, where shared dependencies are
stored only once. In cases where an artifact has a depen-
dency on a trusted (or very large) remote archive, the de-
pendency may simply be tracked instead of ingested. A
researcher that wishes to reproduce a given result need only
refer to the unique identifier of the artifact, and will be able
to automatically extract all of the dependent components of
that artifact.

For example, in Figure 5 Script 1 depends on items A, B,
and C. Items A and B are ingested into the archive, where B
is shared with Script 2. Item C is stored in another trustwor-
thy repository and is tracked rather than ingested. When
Script 1 is exported from the repository, items A and B are
exported along with it, while C can be copied or remain

remote, according to the end user’s choice.
As simple as that picture appears, there are a number of

problems that must be solved to get there:
Measure the Mess or Force Cleanliness? Two rad-

ically different approaches to dependency tracking are pos-
sible. The first is to allow end users complete freedom to
construct their environment as desired, then measure what
items were actually used. As we have shown, this is possible,
but has significant overheads and does not fully preserve the
structure or intent of the end user. The second approach is
to force users to work in a clean environment in which no
resource can be used until a proper dependency has been
declared. This ensures that all dependencies are known in
advance (and made explicit to the end user) but places a
variety of restrictions on the user’s daily work, and may
prevent creative approaches that do not fit within the cura-
tor’s view of how programs should be structured. Whether
end users will accept the inconvenience of forced cleanliness
for the benefits of reproducibility can only be discovered
through experiment.

Granularity of Dependencies. Dependencies could be
handled at many different levels of granularity. In this work,
we have shown how they can be handled at the level of entire
repositories or individual files. Other possible choices might
include intermediate-sized software packages (like RPM) or
in the case of experimental data, even portions of individual
large files. Clearly, a larger granularity will result in fewer
packages, simpler dependency maps, and more wasted space;
smaller granularity results in complex dependency maps and
less wasted space. A hybrid solution may be able to combine
both by storing large granularity dependencies, but retain
the ability to select sub-items out of objects when efficiency
demands it.

Scope of Reuse. We have presented the data preserva-
tion problem as primarily one of accurate reproduction: if
a result depends on running program X, we must be able
to run exactly X again. However, the goal of scientific re-
producibility is rarely limited to running precisely what a
predecessor did. Often, the objective is to change a parame-
ter or a data input in order to see how the result is affected.
To that end, the preservation system must capture enough of
the surrounding material to permit modifications to succeed.
From this perspective, a larger granularity of preservation is
desirable. A better understanding of how end users will con-
sume preserved software will help to shape how software is
preserved in the first place.

Dependency Detection. If we allow users to work
in uncontrolled environments, then we must have better
methods for understanding the dependencies of existing pro-
grams. At first, we relied on an expert reader to examine
the user’s script and extract the repository dependencies.
This is clearly not a scalable approach. We then demon-
strated an automated method of observing what individual
files are accessed by a program. However, this does not
cover all types of dependencies, particularly those that are
networked. More sophisticated observation techniques could
infer higher-level information, such as the RPM package
names of the files accessed, the URLs of remote reposito-
ries named throughout the program, or even the addresses
and names of networked dependencies like databases and
filesystems.

Source, Binary, or Both? A science archive might
choose to retain the source code of an artifact or the bi-

nary code that can actually run in a given environment.
While conventional wisdom suggests that access to source
code is critical for the long term survival and evolution of a
piece of software, it also requires the maintenance of an enor-
mous amount of supporting software in the form of compil-
ers, linkers, and supporting libraries for the target platform.
Rebuilding all of these for every invocation of an artifact
is likely to have excessive cost. We suggest that a realistic
repository will have to maintain both: the source describes
the ultimate meaning of the code, but the binary is an impor-
tant performance cache, a backup if the compiler toolchain
should fail to be preserved, and a checksum to ensure that
a source artifact was rebuilt correctly.

8. RELATED WORK
Generally, there are three approaches to preserve software

environment: hardware preservation, migration and emula-
tion. Hardware preservation preserves the original software
and its original operating environment. Software migration
technique [9, 21] was used to facilitate running software on
new machines. However, migration often involves the re-
compiling and re-configuring the source code to accustom a
new hardware platform and software environment. Emula-
tion recreates the original software and hardware environ-
ment by programming future platforms and OSs. One com-
mon solution to implement this is virtual machine. Accord-
ing to the usage and emulation degree of the real machine,
virtual machine can be divided into system virtual machine
and process virtual machine. The working principle, design
principle and performance evaluation of system virtual ma-
chine were illustrated in [14, 30]. The functionality of sys-
tem VM to support different guest operating systems was
illustrated in [3, 19, 27]. F. Esquembre [13] illustrated how
JVM, one process virtual machine, can expedite the creation
of scientific simulations in Java. The pros and cons of these
three approaches were discussed in [24, 25, 16].

The preservation of computing environment and software
environment was treated as one entirety in [24, 25, 16].
However, frequently changing experiment software makes
the maintenance of the preserved experimental environment
very complex. CernVM [7] treated them as two different
categories. The preservation of computing environment is
implemented with CernVM, and the preservation of software
environment is based on a CernVM filesystem(CVMFS) specif-
ically designed for efficient software distribution.

The importance of preserving software in source code for-
mat was emphasized in [34, 8]. However, CVMFS [7] pub-
lished pre-built and configured experiment software releases
to avoid repeating the time-consuming software building pro-
cedure.

Attempts from different perspectives to facilitate the re-
production of scientific experiments utilizing preserved soft-
ware library has been made. The software distribution mech-
anism over network was discussed in [12, 4]. J. R. Rice
et al. [26] made the reproduction process easier through
the integration of user interface, scientific software libraries,
knowledge base into problem-solving environment. S. R.
Kohn et al. [20] tried to enable the creation and distribu-
tion of language-independent software library by addressing
language interoperability. a scalable, distributed and dy-
namic workflow system for digitization processes was pro-
posed in [29]. A distributed archival network was designed
in [31] to facilitate process-oriented automatic long-term dig-

ital preservation. M. Agosti et al. [1] aimed to help non-
domain users to utilize the digital archive system developed
for domain experts.

Current mechanisms of preserving scientific experiments
assume that all the data and software mentioned in the ex-
periments are necessary for the reproduction of the exper-
iments. However, this is not always right. In some cases,
the original author may leave additional code referring to
irrelative data and software in the experiment programs.
One mechanism, which can figure out the absolutely rele-
vant data and software of one experiment, is important for
both the preservation and reproduction of scientific experi-
ments.

B. Matthews et al. [22] introduced one conceptual frame-
work for software preservation from several case studies of
software preservation. One tool to capture software preser-
vation properties within a software environment was de-
signed in [23] through a series of case studies conducted to
evaluate the software preservation framework. L. R. John-
ston et al. [18] proposed one overall data curation workflow
for 3-5 case studies of preserving research data. Two case
studies [5] were conducted to figure out the properties of
data to be reused in the future, including type, purpose,
new users. To figure out how to preserve HEP applications,
this paper studies one case of preserving one representative
HEP application.

9. POSTSCRIPT
We began this work in late 2013, generating a reduced

package for TauRoast based on the configuration of a stan-
dard machine at Notre Dame at the time. In the course of
writing this paper in spring 2014, almost everything about
the computing environment changed: the operating system
was upgraded, a new version of CMSSW was released, and
our local HEP users switched from using CVS to CVMFS
for accessing CMSSW. The original script provided by the
author failed to run on the same machine. But, the reduced
package we created three months earlier in the old environ-
ment worked just fine on the new machine.

Acknowledgments
This work was supported in part by National Science Foun-
dation grants PHY-1247316 (DASPOS) and OCI-1148330
(SI2). We also thank...

10. REFERENCES
[1] M. Agosti and N. Orio. To envisage and design the

transition from a digital archive system developed for
domain experts to one for non-domain users. In
Proceedings of the 12th ACM/IEEE-CS joint
conference on Digital Libraries, pages 11–14. ACM,
2012.

[2] E. Amazon. Amazon elastic compute cloud (Amazon
EC2). Amazon Elastic Compute Cloud (Amazon
EC2), 2010.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. ACM
SIGOPS Operating Systems Review, 37(5):164–177,
2003.

[4] J. Blomer, P. Buncic, and T. Fuhrmann. CernVM-FS:
delivering scientific software to globally distributed

computing resources. In Proceedings of the first
international workshop on Network-aware data
management, pages 49–56. ACM, 2011.

[5] C. L. Borgman. Data, data use, and scientific inquiry:
Two case studies of data practices. In Proceedings of
the 12th ACM/IEEE-CS joint conference on Digital
Libraries, pages 19–22, 2012.

[6] D. Borthakur. HDFS architecture guide. HADOOP
APACHE PROJECT http://hadoop. apache.
org/common/docs/current/hdfs design. pdf, 2008.

[7] P. Buncic, C. A. Sanchez, J. Blomer, L. Franco,
A. Harutyunian, P. Mato, and Y. Yao. CernVM–a
virtual software appliance for LHC applications. In
Journal of Physics: Conference Series, volume 219,
page 042003. IOP Publishing, 2010.

[8] M. Castagné. Consider the Source: The Value of
Source Code to Digital Preservation Strategies. SLIS
Student Research Journal, 2(2):5, 2013.

[9] C. Cifuentes and V. Malhotra. Binary translation:
Static, dynamic, retargetable? In Software
Maintenance 1996, Proceedings., International
Conference on, pages 340–349. IEEE, 1996.

[10] C. Collaboration, S. Chatrchyan, et al. The CMS
experiment at the CERN LHC. Jinst, 3(08):S08004,
2008.

[11] C. Collaboration et al. The CMSSW Application
Framework, 2006.

[12] G. Compostella, S. P. Griso, D. Lucchesi, I. Sfiligoi,
and D. Thain. CDF software distribution on the Grid
using Parrot. In Journal of Physics: Conference
Series, volume 219, page 062009. IOP Publishing,
2010.

[13] F. Esquembre. Easy Java Simulations: A software tool
to create scientific simulations in Java. Computer
Physics Communications, 156(2):199–204, 2004.

[14] R. P. Goldberg. Survey of virtual machine research.
Computer, 7(6):34–45, 1974.

[15] K. Holtman. CMS data grid system overview and
requirements. Technical report,
CERN-CMS-NOTE-2001-037, 2001.

[16] N. C. Hong, S. Crouch, S. Hettrick, T. Parkinson, and
M. Shreeve. Software Preservation Benefits
Framework. Software Sustainability Institute Technical
Report, 2010.

[17] J. H. Howard, M. L. Kazar, S. G. Menees, D. A.
Nichols, M. Satyanarayanan, R. N. Sidebotham, and
M. J. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems
(TOCS), 6(1):51–81, 1988.

[18] L. R. Johnston. A Workflow Model for Curating
Research Data in the University of Minnesota
Libraries: Report from the 2013 Data Curation Pilot.
2014.

[19] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine monitor.
In Proceedings of the Linux Symposium, volume 1,
pages 225–230, 2007.

[20] S. R. Kohn, G. Kumfert, J. F. Painter, and C. J.
Ribbens. Divorcing Language Dependencies from a
Scientific Software Library. In PPSC, 2001.

[21] D. Mancl. Refactoring for software migration.

Communications Magazine, IEEE, 39(10):88–93, 2001.

[22] B. Matthews, B. McIlwrath, D. Giaretta, and
E. Conway. The significant properties of software: A
study. JISC report, March, 2008.

[23] B. Matthews, A. Shaon, J. Bicarregui, and C. Jones.
A framework for software preservation. International
Journal of Digital Curation, 5(1):91–105, 2010.

[24] B. Matthews, A. Shaon, J. Bicarregui, C. Jones,
J. Woodcock, and E. Conway. Towards a methodology
for software preservation. 2009.

[25] T. A. Phelps and P. B. Watry. A no-compromises
architecture for digital document preservation. In
Research and Advanced Technology for Digital
Libraries, pages 266–277. Springer, 2005.

[26] J. R. Rice and R. F. Boisvert. From scientific software
libraries to problem-solving environments.
Computational Science & Engineering, IEEE,
3(3):44–53, 1996.

[27] M. Rosenblum. VMware’s virtual platform. In
Proceedings of hot chips, pages 185–196, 1999.

[28] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun
network filesystem. In Proceedings of the Summer
USENIX conference, pages 119–130, 1985.

[29] H. Schöneberg, H.-G. Schmidt, and W. Höhn. A
scalable, distributed and dynamic workflow system for
digitization processes. In Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries,
pages 359–362. ACM, 2013.

[30] J. E. Smith and R. Nair. The architecture of virtual
machines. Computer, 38(5):32–38, 2005.

[31] I. Subotic, L. Rosenthaler, and H. Schuldt. A
distributed archival network for process-oriented
autonomic long-term digital preservation. In
Proceedings of the 13th ACM/IEEE-CS joint
conference on Digital libraries, pages 29–38. ACM,
2013.

[32] D. Thain and M. Livny. Parrot: An application
environment for data-intensive computing. Scalable
Computing: Practice and Experience, 6(3):9–18, 2005.

[33] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson,
B. Mueller, J. Small, J. Zelenka, and B. Zhou.
Scalable Performance of the Panasas Parallel File
System. In FAST, volume 8, pages 1–17, 2008.

[34] J. G. Zabolitzky. Preserving software: Why and how.
Iterations: An Interdisciplinary Journal of Software
History, 1(13):1–8, 2002.

